
Class-XII Physics(042)

SECTION-E

Total citernal reflection is the phenomenon in which a ray of light moving from an optically denser to an optically mover medium, and incident on the interface of the two media at an angle greater than the critical angle for the pair of media, is reflected book into the same medium entirely. The two conditions necessary for its occurrence are: . The ray of light should be moving from a denser medium to a rares medium . The argle of incidence should be greater than the critical argle. i > ic, where sin ic = Mrorer = ic = sin 1 ur Hdenser Hd SECTION - D:

1.2	(i) (i) INTERFERENCE PATTERN	DIFFRACTION PATTERN
	The intensity of the bright fringes is the same for all the maxima.	· The intensity of the light brings, decreases as the distance from the central maxima encreases.
	same for all the maxima.	decreases as the distance from the central
		moscina increases
•	The car fringe width of the central maxima	<u> </u>
	is equal to that of the other maxima/	. The width of the central maxima is
	The car brings width of the certs I maxima is equal to that of the other maxima/ bright pringer.	. The width of the central maxima is twice that of the secondary maxima
	×	
2)	B= DD BX BXD BXI	
,	$\beta = \frac{\lambda D}{d} \Rightarrow \beta \alpha \lambda, \beta \alpha D, \beta \alpha \frac{1}{d}$	
2000		
	Fringe width in Young's Double Slit Expe	rine depends on:
	·,	
•	The distance between the two slits, and	the distance between the slits and scre

(ii) d=100 x

D=50cm

charges q and -q reparated by a distance 2a.

The equitorial the is the perpendicular lisetor of the dipole.

Consider a point P on the equitorial plane, at a distance x from the midpoint of the dipole O. $\overrightarrow{E}_P = \overrightarrow{E}_+ + \overrightarrow{E}_-'$

$$E_{+} = E_{-} = \frac{1}{4\pi \xi_{0}} \frac{q}{r^{2}}$$

Resolving E, and E into their rectangular components:

Get More Learning Materials Here : CLICK HERE

www.studentbro.in

From DPAO,
$$\cos 0 = \frac{\alpha}{r}$$

$$E = 2 \times \frac{1}{4\pi \xi_0} \frac{9}{r^2} \times \frac{\alpha}{r} = \frac{9 \cdot 2\alpha}{4\pi \xi_0 r^3}$$

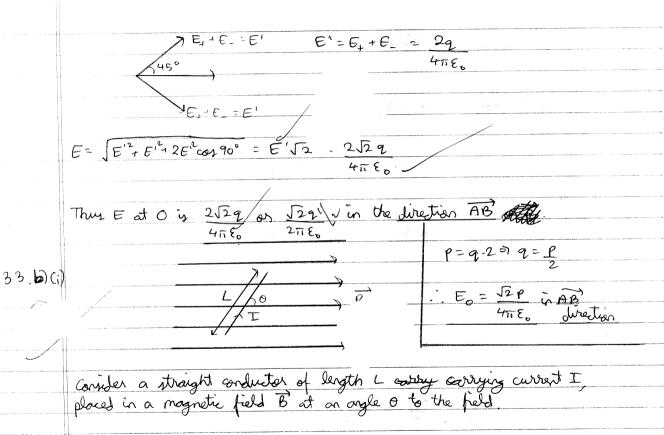
$$P = \text{Charge} \times \text{distance} = 9 \times 2\alpha$$
Also, from DPAO, $r = \sqrt{\alpha^2 + 2^2}$

= -p+ 478, (2+x) 1/2 ~

$$\times$$
 distance = $9 \times 2a$

$$\triangle PAO r = \sqrt{a^2 + x^2}$$

mww.studentbro.in Get More Learning Materials Here:

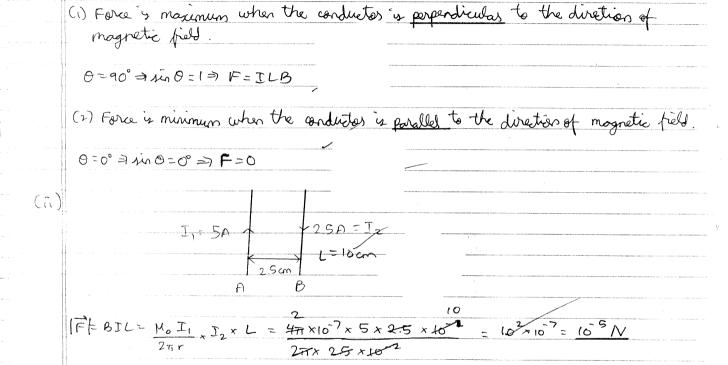

(ii) For a far off point,
$$2 > 2$$
 a $\Rightarrow E = \frac{P}{4\pi\xi_0 2^2} \Rightarrow E \propto \frac{1}{2^3}$

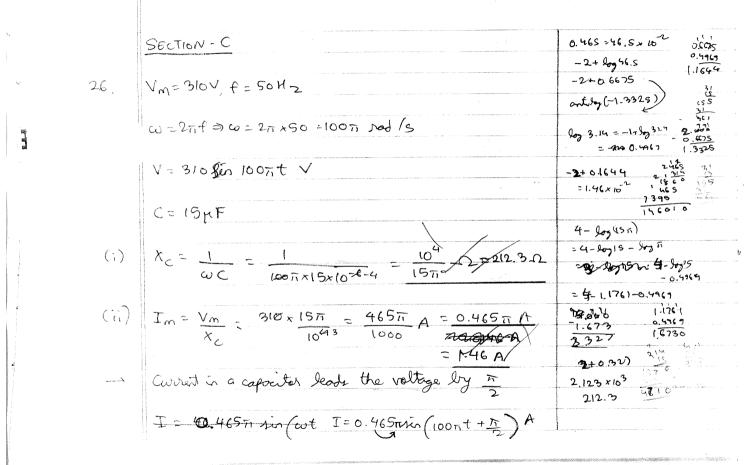
Distance is holized, i.e. $x \to \frac{x}{2}$

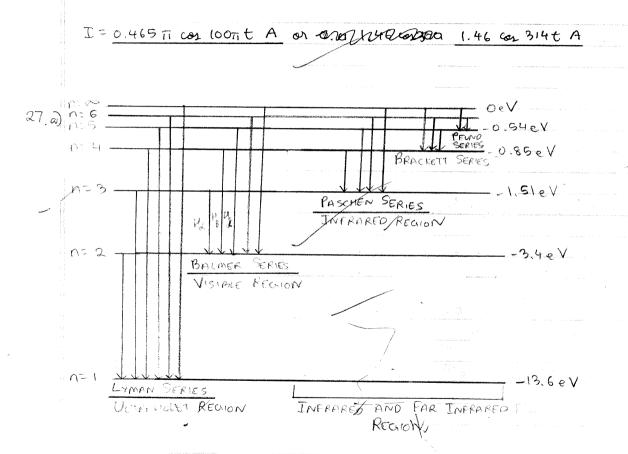
$$E = \frac{1}{2}$$

$$E' = \frac{1}{2} \times \frac{1}{2}$$

CLICK HERE Get More Learning Materials Here:

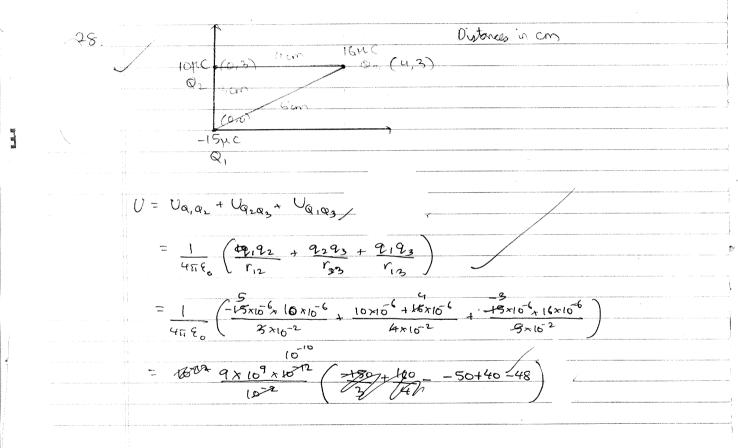



Get More Learning Materials Here :



Let I be the force on a single dectron. Fe = - e (v * B) (Lorentz force, where e is magnitude of charge of the electron) = e (-V] x B) Summing up the forces on all the electrons, considering N electrons in the conductors, F= Ne(-v] x B) = Nev, (-v, x B), where v, in the unit vector in the direction of vi $V_{j} = \frac{T}{neA}$ $\Rightarrow I = neAv_{j}$, where n is the number free electron denity $n = \frac{N}{2}$ F-(NV) e V, (-V, xB) = F= nAkeVd(-V, xB) F=IL(-V, xB) (= neAy = I)

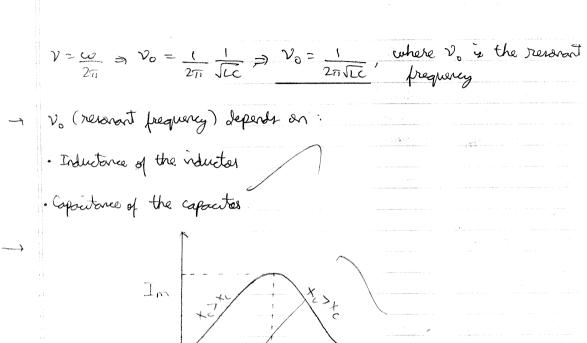
I is the direction of current, is opposite to Vi コルニージ · F=IL(CXB) AF=I(IxB) (LÎ=I), F=ILBMO - The rule used to find the the direction of the force is Fleming's Left Hand Rule The rule states that "When the thund, index figer and middle friger of the left hard are stretched such that they are mutually perpendicular the into finger points in the direction of current, the under finger in the middle direction of the magnetic field, and the thund in the direction of the force exerted on the current carrying conductors. F= ILB mo



Get More Learning Materials Here :

	$X_{L} = X_{C}$	ĵ
	$L\omega_{0} = \frac{1}{C\omega_{0}} \Rightarrow \omega_{0}^{2} = \frac{1}{4C}$	
	cy = 1 where co is the resonant the argular frequency	and control of the co

iet More	e Learning Materials Here : CLICK HERE >> @ www.studentbro	o.in


Z=JR2+(x_-x_)2 , z will be minimum when X_=X_, i.e, Zmin=R

= 9×10-1 x -58 = - 8200

Im = Vm & Z should be minimum

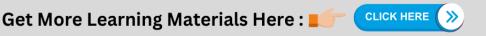
.. U of system = \$52.23

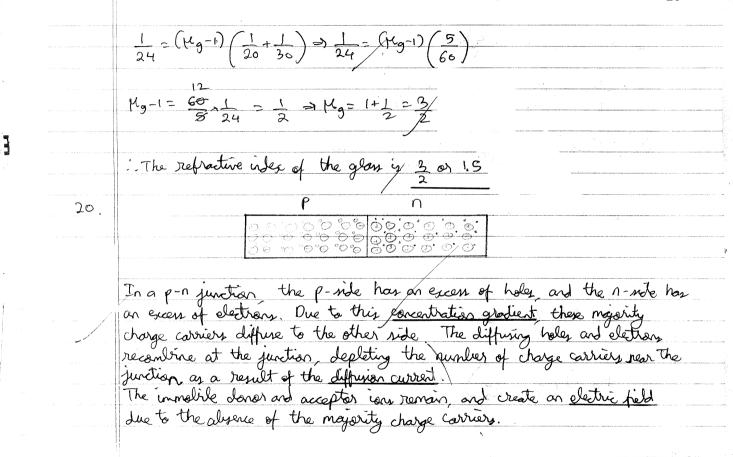
29.b) At resonance, In is moximum

30.
$$\lambda_{3b} = 1.2 \text{ nm}$$
, $KE \rightarrow 4 \text{ KE}$

$$\lambda_{3b} = \frac{h}{\rho} = \frac{h}{\sqrt{2mKe}} \Rightarrow \lambda_{3b} \propto \frac{1}{\sqrt{KE}}$$

$$\lambda - \frac{1}{\sqrt{4ke}} = \frac{1}{\sqrt{2ke}} \Rightarrow \lambda^{1} = \frac{1}{2\sqrt{ke}} \times \sqrt{ke} = \lambda$$


$$\lambda' - \frac{1}{\sqrt{4ke}} = \frac{1}{\sqrt{2ke}} \times \sqrt{ke} = \lambda$$


$$\lambda' - \frac{1}{\sqrt{4ke}} = \frac{1}{\sqrt{2ke}} \times \sqrt{ke} = \lambda$$

$$\lambda' - \frac{1}{\sqrt{4ke}} = \frac{1}{\sqrt{2ke}} \times \sqrt{ke} = \lambda$$

$$\lambda' - \frac{1}{\sqrt{4ke}} = \frac{1}{\sqrt{2ke}} \times \sqrt{ke} = \lambda$$

$$\lambda + \sqrt{$$

Et a gas a g
The electric field created is in the n-p direction. As a result, the minority
charge carriers experience a force and move towards the junction and
traccombine. This depletes all the charge carriers near the juntion and
depletion region. This movement of the minority charges due to the electric fel
constitutes the drift current.

The electric field leads to the creation of a potential borries, which makes a
The electric field leads to the creation of a potential larries which makes is difficult for majority charge corriers to move to the other side of the junction
V P Vo
) 7

∰ www.studentbro.in

21.
$$\vec{\nabla} = (3 \times 10^{3} \hat{C}) \, \text{m/s}$$
, $\vec{D} = 2000 \, \text{m} + (0.4 \hat{C} + 0.3 \hat{A}) \, \text{T}$, $\vec{Q} = 4.8 \times 10^{3} \, \text{C/kg}$

$$\vec{F} = q(\vec{\nabla} \times \vec{B}) \Rightarrow \vec{\alpha} = \vec{P} = \frac{q}{m} \, (\vec{\nabla} \times \vec{B})$$

$$\vec{\alpha} = 4.8 \times 10^{3} \, (3 \times 10^{5}) \, (3 \times (0.4 \hat{C} + 0.3 \hat{A}))$$

$$= 4.8 \times 10^{3} \, (3 \times 10^{5} \times 0.3 \, \hat{R}) \, (3 \times (0.4 \hat{C} + 0.3 \hat{A}))$$

$$\vec{\alpha} = (4.32 \times 10^{12} \, \hat{R}) \, \text{m/s}^{2}$$

$$\vec{\alpha} = (4.32 \times 10^{12} \, \hat{R}) \, \text{m/s}^{2}$$

$$1 - 3.4 \text{eV} - n = 2$$

$$\frac{1}{\lambda} = R \left(\frac{1}{2^{2}} - \frac{1}{3^{2}} \right) = R \left(\frac{1}{4} - \frac{1}{3} \right) = \frac{5R}{36}$$

	7 = 36 x 1 = 36 x 911 Å = (2 x 911) Å	3.4 7.	91
	5 R 5	,	182
		St. Land Carlo	6559
	λ=6559.2 Å = 655.92 nm		911
23.a)	MEDIUM INCIDENT B		(3.77 (5.59°2
	4 WAVEFRONT	۲,	
	A		
	m-num	44	
	MEDIUM REFRACIED WAVEFRON	VT > 1 2	
	. —		
	By Augger's principle, the new wavefront is the	forward surface targe	nt revelope of
	By Huyger's principle, the new wavefront is the the secondary coancelets.	forward surface targe	nt rewelope o
	the secondary counciets.	.s. V - 1 - 8	* ()
	the secondary counciets.	.s. V - 1 - 8	* ; \$\frac{1}{2}
	By Augger's principle, the new wavefront is the the secondary coancelets. Let the refractive index in the first medium be be 1/2. The speed of light in the former is V.	.s. V - 1 - 8	* ; si {
	the secondary counciets.	H, and that in the and in the latter is	* ()

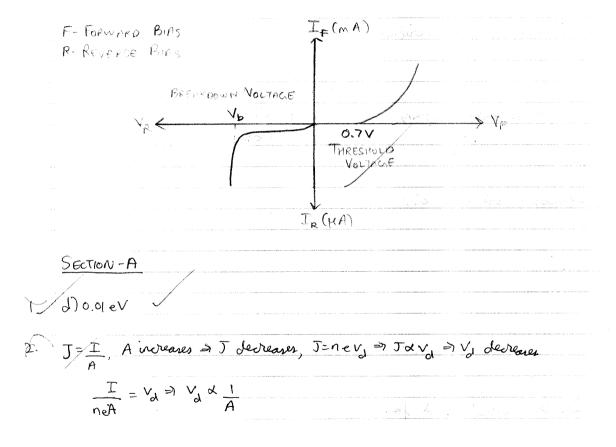
Get More Learning Materials Here:

In DABD,
$$\Delta in \bar{i} = \frac{BO}{AD}$$

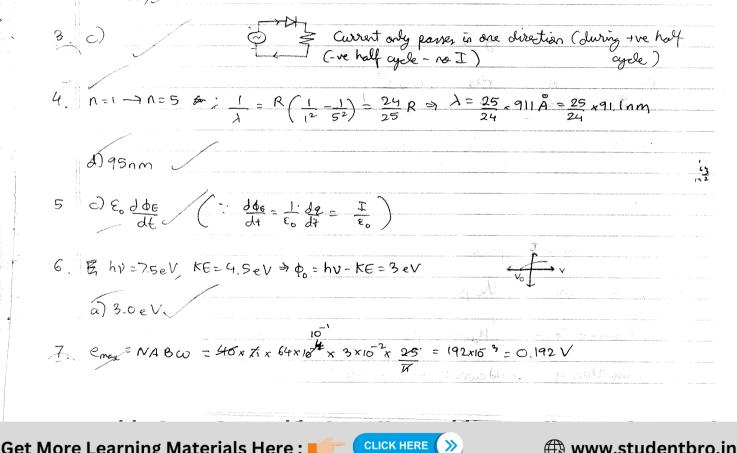
By definition, M2 = VI (-, H2 = C, H1 = C)

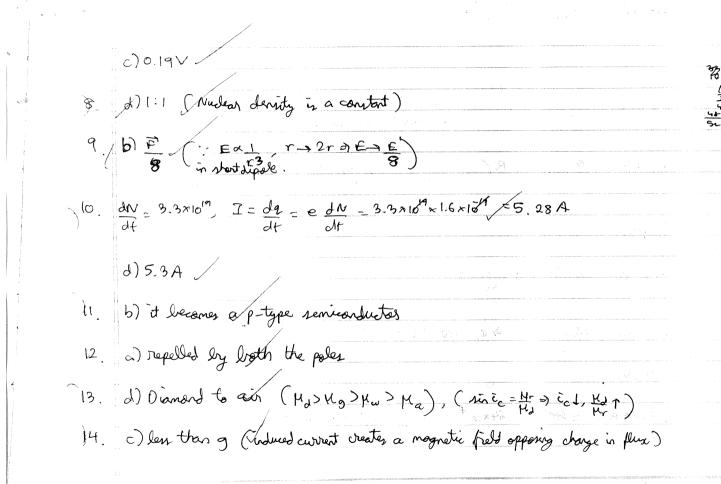
CLICK HERE

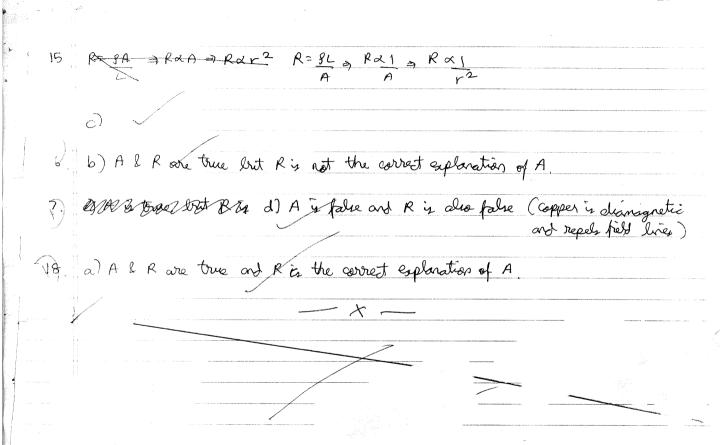
mww.studentbro.in

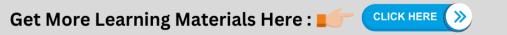


Hence Snell's Law is verified 24 a Murowaves a) Infrared Use: RADAR navgation systems Use: Remotes and surther Caneras in mist/fog carditions 6) X-rays Use: Diagnostic tool is melicine, studying crystal structure 25.6) 17 - VARIABLE BATTERY (V) - VOLIMETER (mA) - MILLIAMMETER (MA) - MICROAMNETER FORWARD BIAS REVERSE BIAS DI-DIODE These are the arcuits used for studying a dide is V-I characteristic


Get More Learning Materials Here : CLICK HERE Www.studentbro.in


Get More Learning Materials Here:


(>>)


mww.studentbro.in

Get More Learning Materials Here: 🕀 www.studentbro.in

www.studentbro.in